Welcome!

I am currently co-founder and CTO of CoVent. At CoVent, our mission is to redefine sponsorship discovery and evaluation through an AI-enabled marketplace. Before, I worked as a Staff Research Scientist in Blue Prism AI Labs, London and also worked as Principal Researcher (Machine Learning) in Bell Labs, Cambridge (UK).

I finished my Ph.D. in 2012 at the University of Leeds under Prof. Tony Cohn and Prof. David Hogg in the areas of Machine Learning and Cognitive Vision and was funded by the European Commission's Co-Friend, RACE, STRANDS projects, and DARPA's Mind's Eye project.



News

CoVent is backed by Founders Factory!
Other Updates

Employment

2024
Present

CoVent (USA)

Co-founder & CTO

Idea, execution, fund raising, building team and product.
2023
2024

A2O AI (London, UK)

Co-founder

Idea, execution, building team and vision.
2022
2023

Jeevi AI (London, UK)

Co-founder

Idea, execution, building team and vision.
2019
2022

Blue Prism (London, UK)

Staff Research Scientist

Deep Learning, Computer Vision and Reinforcement Learning.
2018
2019

Bell Labs (Cambridge, UK)

Principal Researcher, Machine Learning

Principal Researcher: Algorithms, Analytics & Augmented Intelligence Research Lab, Bell Labs, Cambridge (UK).
2015
2017

Advanced Research Lab, Nokia (Cambridge, UK)

Principal Researcher, Machine Learning

I worked on Deep Learning algorithms, depth maps from 360 video content and dialogue systems.
2012
2015

University of Leeds, UK

Research Fellow

I worked in the European Commission's RACE and STRANDS projects where my contribution was to develop novel machine learning algorithms to learn and detect activities in videos.
2006
2008

D.E.Shaw & Co, India

Member - Information Technology

Worked in front office group responsible for building real-time financial data-feed infrastructure, high-performance middleware, interactive trading systems, portifolio management and work flow tools, and quantitative analysis tools.

Education

2008
2012

University of Leeds, UK

PhD (Machine Learning)

I finished my Ph.D. in March, 2012 at the University of Leeds under the supervision of Prof. Tony Cohn and Prof. David Hogg in the areas of Machine Learning and Cognitive Vision. The thesis title is Learning Relational Event Models from Videos and was funded by the European Commission's Co-Friend project and DARPA's Mind's Eye project (partner: SRI International).
2004
2006

University of Hyderabad, India

Master of Technology (Artificial Intelligence)

My thesis was N-gram analysis for Computer Virus Detection (Department of CIS' Best Thesis Award and Gold Medal sponsored by TCS, 2006) which I completed under the guidance of Prof. Arun Pujari.
2000
2004

J.N.T. University, India

Bachelor of Technology (Computer Science and Engineering)

My final year project was titled Congestion Control in ATM Networks Using Neural Networks.

Patents

1) An Apparatus and Associated Methods for Determining User Activity Profiles

2) An Apparatus, Method and Computer Program for Obtaining Images From an Image Capturing Device

3) Apparatus, Method and System For Identifying a Target Object From a Plurality of Objects

4) Method of remote access

6) Method, Device and System For Validating Sensitive User Data Transactions Within Trusted Circle

7) Profile Information Sharing

8) System and Methods for Robotic Process Automation

Publications

Journals

1) Krishna S.R. Dubba, Anthony G. Cohn, David C. Hogg, Mehul Bhatt, Frank Dylla: Learning Relational Event Models from Video, In Journal of Aritificial Intelligence Research, 2015.

2) Krishna S.R. Dubba, Arun K. Pujari: N-gram Analysis for Computer Virus Detection, Journal in Computer Virology, Vol-2, Number-3, Dec-2006, Springer-France.

Conference Proceedings

1) Joachim Hertzberg, Jianwei Zhang, Liwei Zhang, Sebastian Rockel, Bernd Neumann, Jos Lehmann, Krishna S.R. Dubba et.al. The RACE Project. In KI-Künstliche Intelligenz, 2014.

2) Krishna S.R. Dubba; Miguel R. de Oliveira; Gi Hyun Lim; Hamidreza Kasaei; Luis Seabra Lopes; Ana Tome and Anthony G. Cohn: Grounding Language in Perception for Scene Conceptualization in Autonomous Robots. In AAAI Spring Symposium Series, 2014.

3) Rockel, S.; Neumann, B.; Zhang, J.; Dubba, K.; Cohn, A.; Konecny, S.; Mansouri, M.; Pecora, F.; Saffiotti, A.; Gunther, M.; Stock, S.; Hertzberg, J.; Tome, A.; Pinho, A.; Seabra Lopes, L.; von Riegen, S.; and Hotz, L: An Ontology-based Multi-Level Robot Architecture for Learning from Experiences. In AAAI Spring Symposium Series, 2013.

4) Krishna S.R. Dubba, Mehul Bhatt, Frank Dylla, Anthony G. Cohn, David C. Hogg: Interleaved Inductive-Abductive Reasoning for Learning Event-Based Activity Models, Proc. of ILP, 2011. Berkshire, UK.

5) Krishna S.R. Dubba, Anthony G. Cohn, David C. Hogg: Event Model Learning from Complex Videos using ILP, European Conference on Artificial Intelligence - 2010, Portugal.

6) Krishna S.R. Dubba, Subrat K. Dash, Arun K. Pujari: New Malicious Code Detection Using Variable Length n-grams, LNCS-4332/2006, Springer-Berlin / Heidelberg.

Book Chapters

1) Subrat K. Dash, Krishna S.R. Dubba, Arun K. Pujari: New Malicious Code Detection Using Variable Length n-grams, Algorithms, Architectures and Information Systems Security, Statistical Science and Interdisciplinary Research - VOL3, World Scientific, 2008.

PhD Thesis

Learning Relational Event Models from Videos, 2012.

Research in Industry

My work in Blue Prism AI Labs, London was in deep learning, computer vision and program analysis to help make tools for improving business process automations.

In Bell Labs, Cambridge, UK, I worked in Social Dynamics Group focused on the topic "quantifying the unquantifiable". I worked on explainable emotion detection in images using explainable AI (XAI) fusing knowledge graphs and deep learning.

Past Academic Research

My academic research in general falls under the areas of Machine Learning (in particular Statistical Relational Learning, Deep Learning), Cognitive Vision, Knowledge Representation, Graph Analysis and Spatio-Temporal Reasoning. I worked in European Commission's RACE, STRANDS and Co-Friend projects. I also worked in DARPA's Mind's Eye project where we developed systems that learn relational event models from videos.

Grounding Language in Perception for Scene Conceptualization in Autonomous Robots

In order to behave autonomously, it is desirable for robots to have the ability to use human supervision and learn from different input sources (perception, gestures, verbal and textual descriptions etc). In this work, we present a cognitive architecture and learning framework for robot learning through natural human supervision and using multiple input sources by grounding language in perception.

An Ontology-based Multi-Level Robot Architecture for Learning from Experiences

One way to improve the robustness and flexibility of robot performance is to let the robot learn from its experiences. In this work, we propose an architecture and knowledge-representation framework for a service robot being developed in the EU project RACE. As a unique innovative feature, the framework combines memory records of low-level robot activities with ontology-based high-level semantic descriptions.

Learning Relational Event Models from Video

In this paper, we present a novel framework REMIND (Relational Event Model INDuction) for supervised relational learning of event models from large video datasets. The learned models can be used for recognizing events from previously unseen videos. The experimental results on several hours of video data from two challenging real world domains (an airport domain and a physical action verbs domain) suggest that the techniques are suitable to real world scenarios.

Event model learning from complex videos

In this paper, we have proposed and successfully applied a novel supervised framework for learning relational event models from a huge, complex and noisy video dataset. The experimental results on video data from an airport apron where events such as Loading, Unloading, Jet-Bridge Parking etc. are learned suggests that the techniques are suitable to real world scenarios.

N-gram analysis for computer virus detection

Motivated by the success of Machine Learning techniques in intrusion detection systems, recent research in detecting malicious executables is directed towards devising efficient non-signature based computer virus detection techniques that can profile the program characteristics from a set of training examples. In this paper, we describe a new feature selection measure, class-wise document frequency of byte n-grams. We empirically demonstrate that the proposed method is a better method for feature selection. For detection, we combine several classifiers using Dempster Shafer Theory for better classification accuracy instead of using a single classifier. Our experimental results show that such a scheme detects virus program far more efficiently than the earlier known methods.

Updates

Program Committees

International Conference on Advanced Communications and Machine Intelligence (2024)

I’m honored to serve as a program committee member for MICA 2024, contributing to peer review and scientific discussions.

View MICA 2024 Conference
AAAI-2020 Workshop on Intelligent Process Automation: New York, USA
IPA 2020

I’m honored to serve as a program committee member for IPA-2020, contributing to peer review and scientific discussions.

IPA-2020
International Workshop on Egocentric Perception, Interaction and Computing, European Conference on Computer Vision - 2016, Amsterdam
EPIC 2016

I’m honored to serve as a program committee member for EPIC-2016, contributing to peer review and scientific discussions.

EPIC@ECCV2016
AAAI workshop on Plan, Activity and Intent Recognition, Bellevue, Washington, USA

I’m honored to serve as a program committee member for PAIR-2013, contributing to peer review and scientific discussions.

PAIR-2013

Judging & Events

Formula Student 2021 - Artificial Intelligence (FS-AI) judge, Silverstone, UK
F1 Hackathon

In July 2021, the Institution of Mechanical Engineers hosted the Formula Student event at the iconic Silverstone race track. Formula Student is Europe's most established educational engineering competition, held every year. The competition aims to develop enterprising and innovative young engineers and encourage more young people to pursue a career in engineering.

Event Highlights

Dagstuhl Seminars

Dagstuhl Seminar 12491: Interpreting Observed Action (Dec 02–07, 2012)
Schloss Dagstuhl

Dagstuhl seminars are the flagship of the event program at Schloss Dagstuhl. They are often praised by participants as the most productive academic events they have ever experienced. Consequently participation is highly coveted. In order to maintain the constant high standard of the Dagstuhl Seminars, proposals must also include a list of intended participants which is checked by the Scientific Directorate as part of the review process. Consequently, participation in a Dagstuhl seminar is by invitation only.

Event Link
Report
Dagstuhl Seminar 14081: Robots Learning from Experiences (Feb 16–21, 2014)
Schloss Dagstuhl

Dagstuhl seminars are the flagship of the event program at Schloss Dagstuhl. They are often praised by participants as the most productive academic events they have ever experienced. Consequently participation is highly coveted. In order to maintain the constant high standard of the Dagstuhl Seminars, proposals must also include a list of intended participants which is checked by the Scientific Directorate as part of the review process. Consequently, participation in a Dagstuhl seminar is by invitation only.

Event Link
Report

Invited Talk / Speaker

Invited talk at Microsoft: Decoding Entrepreneurship in AI: A journey of triumphs and Trials

Video of my talk published by Microsoft (starts after 24 mins)

View the video on Youtube
European Research Seventh Framework Programme - 2014
Qualitative Representations for Robots, AAAI-2014, Palo Alto, California
Data Analytics Challenges Workshop, School of Mathematics, University of Leeds - 2014
Inductive Logic Programming-2011, Windsor Great Park, UK
SRL Research Meeting - University of Texas, Austin - 2011
Python Discussion Group, University of Leeds - 2014
Delegate at Cambridge Wireless Technology and Engineering Conference - 2017

Awards and Invited Participation

Best Thesis Award: Masters in Artificial Intelligence, University of Hyderabad (2006)
Award
Ignite Entrepreneurship Program (Judge Business School, University of Cambridge, UK) - 2022

News Articles

Researchers awarded £38K donation by Nokia for wearable object interaction

Contact